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y = a + b sin x

The diagram shows part of the graph ofy = a + b sinx. State the values of the constantsa andb. [2]

2 (i) Express 4x2
− 12x in the form�2x + a�2

+ b. [2]

(ii) Hence, or otherwise, find the set of values ofx satisfying 4x2
− 12x > 7. [2]

3 Find the term independent ofx in the expansion of
@
4x3

+
1
2x

A8

. [4]

4 A curve has equationy =
4

�3x + 1�2 . Find the equation of the tangent to the curve at the point where

the linex = −1 intersects the curve. [5]

5 An arithmetic progression has first terma and common differenced. It is given that the sum of the
first 200 terms is 4 times the sum of the first 100 terms.

(i) Findd in terms ofa. [3]

(ii) Find the 100th term in terms ofa. [2]
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The diagram shows triangleABC in whichAB is perpendicular toBC. The length ofAB is 4 cm and
angleCAB is ! radians. The arcDE with centreA and radius 2 cm meetsAC atD andAB atE. Find,
in terms of!,

(i) the area of the shaded region, [3]

(ii) the perimeter of the shaded region. [3]

7 The coordinates of pointsA andB are�a, 2� and�3, b� respectively, wherea andb are constants. The
distanceAB is

��125� units and the gradient of the lineAB is 2. Find the possible values ofa and
of b. [6]

8 Relative to an originO, the position vectors of pointsA andB are given by

−−→
OA =

`
3p
4

p2

a
and

−−→
OB =

`
−p
−1
p2

a
.

(i) Find the values ofp for which angleAOB is 90Å. [3]

(ii) For the case wherep = 3, find the unit vector in the direction of
−−→
BA. [3]

9 (i) Prove the identity
sin1

1− cos1
−

1
sin1

�
1

tan1
. [4]

(ii) Hence solve the equation
sin1

1− cos1
−

1
sin1

= 4 tan1 for 0Å < 1 < 180Å. [3]

[Questions 10, 11 and 12 are printed on the next page.]
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The diagram shows the function f defined for−1 ≤ x ≤ 4, where

f �x� =

t
3x − 2 for −1 ≤ x ≤ 1,

4
5− x

for 1 < x ≤ 4.

(i) State the range of f. [1]

(ii) Copy the diagram and on your copy sketch the graph ofy = f −1�x�. [2]

(iii) Obtain expressions to define the function f−1, giving also the set of values for which each
expression is valid. [6]

11 A line has equationy = 2x + c and a curve has equationy = 8− 2x − x2.

(i) For the case where the line is a tangent to the curve, find the value of the constantc. [3]

(ii) For the case wherec = 11, find thex-coordinates of the points of intersection of the line and the
curve. Find also, by integration, the area of the region between the line and the curve. [7]

12 A curve is such that
dy
dx

= x
1
2 − x−1

2. The curve passes through the point
�
4, 2

3

�
.

(i) Find the equation of the curve. [4]

(ii) Find
d2y

dx2 . [2]

(iii) Find the coordinates of the stationary point and determine its nature. [5]
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